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The problem

X ∼ µ, with µ probability measure on E ( Rd , or a subset)
We know how to draw samples from µ
Given a function S : E 7−→ R, we look at the rare event

R = {S(X ) > τ}

We want to compute µ(R) = P(X ∈ R), and draw samples from
µR(dx) = 1

µ(R)1R(x)µ(dx)
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Main Idea

LjL1 L2 . . . . . .

p2 = P(S(X ) > L2|S(X ) > L1)

R

pdf of S(X )

τ = Ln0

• Ingredients: fix n0 and L1 < · · · < Ln0
= τ so that each

pj = P(S(X ) > Lj |S(X ) > Lj−1) is not too small.

• Bayes decomposition: α = p1p2 . . . pn0
.

• Unreasonable assumption: suppose we can estimate each pj

independently with usual Monte-Carlo: pj ≈ p̂j = Nj/N.

• Multilevel Estimator: α̂N = p̂1p̂2 . . . p̂n0
.
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The Shaker

• Recall: X ∼ µ on E .

• Ingredient: a µ−reversible transition kernel M(x , dx ′) on E :

∀(x , x ′) ∈ E 2 µ(dx)M(x , dx ′) = µ(dx ′)M(x ′, dx).

• Consequence: µM = µ.

• Example: if X ∼ N (0, 1) then X ′ = X+σW√
1+σ2

∼ N (0, 1), i.e.

M(x , dx ′) ∼ N ( x√
1+σ2

, σ2

1+σ2 )(dx ′) is a “good shaker”.

x

x√
1+σ

2

M(x, .) = N ( x√
1+σ

2
, σ

2

1+σ
2
)
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A Selection/Mutation Algorithm

L1

p̂1 = 4

8

• Initialization: Simulate an i.i.d. sample ξ1
0 , . . . , ξ

N
0 ∼ µ.

• Selection: ξ̂i
0 = ξi

0 if S(ξi
0) > L1, else pick at random among

the N1 selected particles.

• Mutation: ξ̃i
0 ∼ M(ξ̂i

0, dx ′) and

∀i ∈ {1, . . . ,N} ξi
1 =

{

ξ̃i
1 if S(ξ̃i

1) > L1

ξ̂i
1 if S(ξ̃i

1) ≤ L1
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A Selection/Mutation Algorithm

L1 L2

p̂2 = 3

8
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The Impact of the Kernel

x

x√
1+σ

2

M(x, .) = N ( x√
1+σ

2
, σ

2

1+σ
2
)

• The model: X ′ = X+σW√
1+σ2

∼ N (0, 1).

• Expected square distance: E[(X ′ − X )2] = 2
(

1− 1√
1+σ2

)

.

~
Trade-off between two drawbacks:

• σ too large: most proposed mutations are refused.
• σ too small: particles almost don’t move.
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Variance Optimization

• Multilevel Estimator: α̂N = p̂1p̂2 . . . p̂n0
.

• Fluctuations: If the p̂i ’s are independent, then

√
N · α̂N − α

α

L−−−−→
N→∞

N



0,

n0
∑

j=1

1− pj

pj



 .

• Constrained Minimization:

arg min
p1,...,pn0

n0
∑

j=1

1− pj

pj
s.t.

n0
∏

j=1

pj = α.

• Optimum: p1 = · · · = pn0
= α1/n0 .

⇒ Solution: Adaptive levels.
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Adaptive Levels

Parameter: fix a proportion p0 of surviving particles from one step
to another rather than n0 and the levels L1, . . . , Ln0

.

L̂1 for p0 = 1/2

R

τ

pdf of S(X )

⇒ Adaptive multilevel estimator:

α = r × pn0

0 ≈ α̂N = r̂ × pn̂0

0 ,

with n0 =
⌊

logP(S(X )>τ)
log p0

⌋

and p0 < r ≤ 1.
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Adaptive Levels

Best adaptive asymtotic variance:

n0
1− p0

p0

+
1− r

r
.

Expression decreasing with larger values of p0 (constraint
α = r × pn0

0 ).

Limit case: p0 = 1− 1
N

, normalized asymptotic variance ≃ − logα
N

.

Question: How to use the whole empirical c.d.f. of the scores ?
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Adaptive Tilting

Idea: exponential tilting to improve the likelihood of large values of
S(X ), using only the current empirical distribution.

Let FY the c.d.f. of Y = S(X ). The rare event isR = {Y > L} = {− log FY (Y ) < − log FY (L)}.

E = − log FY (Y ) is exp(1) distributed (FY continuous).
We want X 1

k , . . . ,X
N
k (approx.) distributed such that

− log FY (φ(X 1
k )), . . . ,− log FY (φ(XN

k )) are a sample of exp(ak).
With the knowledge of FY , this could be done by a MCMC
approach.
µk the target distribution, absolutely continuous w.r.t. µ:

dµk

dµ
(x) = ak exp(−(ak−1)(− log FY (φ(x)))) = ak(FY (S(x)))ak−1.
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Adaptive Tilting

At iteration k , we have a sample y1 = S(x1), . . . , yN = S(xN ) of a
random variable Yk such that − log(FY (Yk)) is distributed as
exp(ak). Let us denote Fk its c.d.f.

Fk(h) = P(Yk ≤ h) = (FY (h))ak .

Estimate of FY on the region of interest by

FY (h) ≃ (FN
k (h))

1
ak ,

where FN
k is the empirical c.d.f. of the current sample.

Level Splitting ←→ New empirical c.d.f.
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New Algorithm

• Start with a µ sample x1
1 , . . . , x

1
N .

• Compute y1
1 = S(x1

1 ), . . . , y
1
N = S(x1

N ).

• Sort y1
1 , . . . , y

1
N . This gives the empirical c.d.f FN

1 .

• k = 1, a1 = 1.

• Iterate

• k = k + 1.
• ak = ak−1/p0.
• Metropolis-Hastings MCMC in parallel with target distribution

µk (for the whole sample xk−1

1
, . . . , xk−1

N , see next algorithm).
This will make use of FN

k−1
.

• This will give the next samples xk
1
, . . . , xk

N and
yk
1
= S(xk

1
), . . . , yk

N = S(xk
N ).

• Sort yk
1
, . . . , yk

N . This gives the empirical c.d.f FN
k .

• Until q̂ = 1
N

∑N
j=1 1yk

j
>L > p0.

• Return p̂ = 1− (1− q̂)
1
ak .
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Metropolis-Hastings iteration

• Draw a proposal X̃m+1 ∼ K (Xm, .).

• Compute Metropolis-Hastings ratio

r =
K (X̃m+1,Xm)µ(X̃m+1)

dµk

dµ (X̃m+1)

K (Xm, X̃m+1)µ(Xm)
dµk

dµ (Xm)

=
K (X̃m+1,Xm)µ(X̃m+1)

K (Xm, X̃m+1)µ(Xm)

[

FN
k−1(X̃m+1)

FN
k−1(Xm)

]

ak
ak−1

− 1
ak−1

.

• Draw U ∼ U(0, 1).

• If U < r , then Xm+1 = X̃m+1 else Xm+1 = Xm.

• m = m + 1.
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Numerical Results
Toy example: P(N(0, 1) > 5) = 2.8665× 10−07
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Figure: Ratio of splitting variance bound over empirical MSE for different
values of p0.
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Conclusion

• It works ! (quite unexpected...)

• Performs better than splitting for p0 ≤ 1/3, but worse than
“last particle” algorithm.

• Fully parallel algorithm.

• Possible improvements: population MCMC, estimate of the
rare probability.

• To do: theoretical analysis...
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