Soft level splitting for rare event estimation

F. Cerou¹ A. Guyader² N. Hengartner³

¹Inria Rennes Bretagne Atlantique ²Université Rennes 2 ³Los Alamos National Laboratory

> RESIM 2012 June 25-27, Trondheim

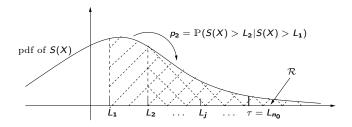
The problem

 $X\sim \mu$, with μ probability measure on E (\mathbb{R}^d , or a subset) We know how to draw samples from μ Given a function $S: E\longmapsto \mathbb{R}$, we look at the rare event

$$\mathcal{R} = \{S(X) > \tau\}$$

We want to compute $\mu(\mathcal{R}) = \mathbb{P}(X \in \mathcal{R})$, and draw samples from $\mu_{\mathcal{R}}(dx) = \frac{1}{\mu(\mathcal{R})} \mathbb{1}_{\mathcal{R}}(x) \mu(dx)$

Main Idea



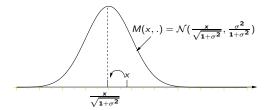
- Ingredients: fix n_0 and $L_1 < \cdots < L_{n_0} = \tau$ so that each $p_j = \mathbb{P}(S(X) > L_j | S(X) > L_{j-1})$ is not too small.
- Bayes decomposition: $\alpha = p_1 p_2 \dots p_{n_0}$.
- Unreasonable assumption: suppose we can estimate each p_j independently with usual Monte-Carlo: $p_j \approx \hat{p}_j = N_j/N$.
- Multilevel Estimator: $\hat{\alpha}_N = \hat{p}_1 \hat{p}_2 \dots \hat{p}_{n_0}$.

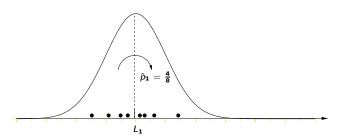
The Shaker

- Recall: $X \sim \mu$ on E.
- **Ingredient**: a μ -reversible transition kernel M(x, dx') on E:

$$\forall (x,x') \in E^2 \qquad \mu(dx)M(x,dx') = \mu(dx')M(x',dx).$$

- Consequence: $\mu M = \mu$.
- Example: if $X \sim \mathcal{N}(0,1)$ then $X' = \frac{X + \sigma W}{\sqrt{1 + \sigma^2}} \sim \mathcal{N}(0,1)$, i.e. $M(x, dx') \sim \mathcal{N}(\frac{x}{\sqrt{1 + \sigma^2}}, \frac{\sigma^2}{1 + \sigma^2})(dx')$ is a "good shaker".

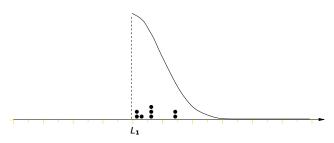




- Initialization: Simulate an i.i.d. sample $\xi_0^1, \dots, \xi_0^N \sim \mu$.
- **Selection**: $\hat{\xi}_0^i = \xi_0^i$ if $S(\xi_0^i) > L_1$, else pick at random among the N_1 selected particles.
- Mutation: $ilde{\xi}_0^i \sim M(\hat{\xi}_0^i, dx')$ and

$$\forall i \in \{1, \dots, N\} \qquad \quad \xi_1^i = \left\{ \begin{array}{l} \tilde{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) > L_1 \\ \hat{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) \leq L_1 \end{array} \right.$$

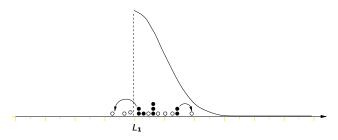
A Selection/Mutation Algorithm



- Initialization: Simulate an i.i.d. sample $\xi_0^1, \dots, \xi_0^N \sim \mu$.
- **Selection**: $\hat{\xi}_0^i = \xi_0^i$ if $S(\xi_0^i) > L_1$, else pick at random among the N_1 selected particles.
- Mutation: $\tilde{\xi}_0^i \sim M(\hat{\xi}_0^i, dx')$ and

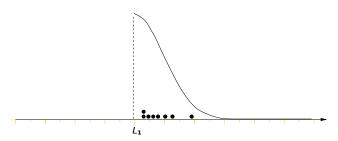
$$\forall i \in \{1, \dots, N\} \qquad \quad \xi_1^i = \left\{ \begin{array}{l} \tilde{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) > L_1 \\ \hat{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) \leq L_1 \end{array} \right.$$

A Selection/Mutation Algorithm



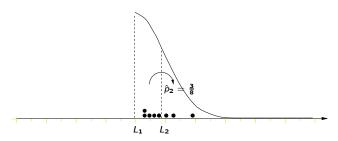
- **Initialization**: Simulate an i.i.d. sample $\xi_0^1, \dots, \xi_0^N \sim \mu$.
- **Selection**: $\hat{\xi}_0^i = \xi_0^i$ if $S(\xi_0^i) > L_1$, else pick at random among the N_1 selected particles.
- Mutation: $\tilde{\xi}_0^i \sim M(\hat{\xi}_0^i, dx')$ and

$$\forall i \in \{1, \dots, N\} \qquad \quad \xi_1^i = \left\{ \begin{array}{l} \tilde{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) > L_1 \\ \hat{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) \leq L_1 \end{array} \right.$$



- Initialization: Simulate an i.i.d. sample $\xi_0^1, \dots, \xi_0^N \sim \mu$.
- **Selection**: $\hat{\xi}_0^i = \xi_0^i$ if $S(\xi_0^i) > L_1$, else pick at random among the N_1 selected particles.
- Mutation: $ilde{\xi}_0^i \sim M(\hat{\xi}_0^i, dx')$ and

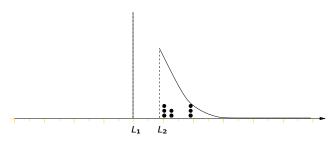
$$\forall i \in \{1, \dots, N\} \qquad \quad \xi_1^i = \left\{ \begin{array}{l} \tilde{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) > L_1 \\ \hat{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) \leq L_1 \end{array} \right.$$



- Initialization: Simulate an i.i.d. sample $\xi_0^1, \dots, \xi_0^N \sim \mu$.
- **Selection**: $\hat{\xi}_0^i = \xi_0^i$ if $S(\xi_0^i) > L_1$, else pick at random among the N_1 selected particles.
- Mutation: $\tilde{\xi}_0^i \sim M(\hat{\xi}_0^i, dx')$ and

$$\forall i \in \{1, \dots, N\} \qquad \quad \xi_1^i = \left\{ \begin{array}{l} \tilde{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) > L_1 \\ \hat{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) \leq L_1 \end{array} \right.$$

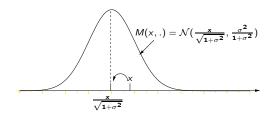
A Selection/Mutation Algorithm



- Initialization: Simulate an i.i.d. sample $\xi_0^1, \dots, \xi_0^N \sim \mu$.
- **Selection**: $\hat{\xi}_0^i = \xi_0^i$ if $S(\xi_0^i) > L_1$, else pick at random among the N_1 selected particles.
- Mutation: $\tilde{\xi}_0^i \sim M(\hat{\xi}_0^i, dx')$ and

$$\forall i \in \{1, \dots, N\} \qquad \quad \xi_1^i = \left\{ \begin{array}{l} \tilde{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) > L_1 \\ \hat{\xi}_1^i & \text{if } S(\tilde{\xi}_1^i) \leq L_1 \end{array} \right.$$

The Impact of the Kernel



- The model: $X' = \frac{X + \sigma W}{\sqrt{1 + \sigma^2}} \sim \mathcal{N}(0, 1)$.
- Expected square distance: $\mathbb{E}[(X'-X)^2] = 2\left(1 \frac{1}{\sqrt{1+\sigma^2}}\right)$.

Trade-off between two drawbacks:

- ullet σ too large: most proposed mutations are refused.
- σ too small: particles almost don't move.

Variance Optimization

- Multilevel Estimator: $\hat{\alpha}_N = \hat{p}_1 \hat{p}_2 \dots \hat{p}_{n_0}$.
- Fluctuations: If the \hat{p}_i 's are independent, then

$$\sqrt{N} \cdot \frac{\hat{\alpha}_N - \alpha}{\alpha} \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N} \left(0, \sum_{j=1}^{n_0} \frac{1 - p_j}{p_j} \right).$$

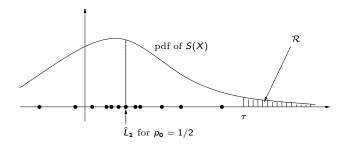
Constrained Minimization:

$$\arg\min_{p_1,\dots,p_{n_0}}\sum_{j=1}^{n_0}rac{1-p_j}{p_j} \qquad ext{ s.t. } \qquad \prod_{j=1}^{n_0}p_j=lpha.$$

- Optimum: $p_1 = \cdots = p_{n_0} = \alpha^{1/n_0}$.
- ⇒ **Solution**: Adaptive levels.

Adaptive Levels

Parameter: fix a proportion p_0 of surviving particles from one step to another rather than n_0 and the levels L_1, \ldots, L_{n_0} .



⇒ Adaptive multilevel estimator:

$$\alpha = r \times p_0^{n_0} \approx \hat{\alpha}_N = \hat{r} \times p_0^{\hat{n}_0},$$

with
$$n_0 = \left\lfloor \frac{\log \mathbb{P}(S(X) > \tau)}{\log p_0} \right\rfloor$$
 and $p_0 < r \le 1$.

Adaptive Levels

Best adaptive asymtotic variance:

$$n_0 \frac{1-p_0}{p_0} + \frac{1-r}{r}$$
.

Expression decreasing with larger values of p_0 (constraint $\alpha = r \times p_0^{n_0}$).

Limit case: $p_0 = 1 - \frac{1}{N}$, normalized asymptotic variance $\simeq \frac{-\log \alpha}{N}$.

Question: How to use the whole empirical c.d.f. of the scores ?

Adaptive Tilting

Idea: exponential tilting to improve the likelihood of large values of S(X), using only the current empirical distribution.

Let F_Y the c.d.f. of Y = S(X). The rare event is

$$\mathbb{R} = \{Y > L\} = \{-\log F_Y(Y) < -\log F_Y(L)\}.$$

 $E = -\log F_Y(Y)$ is $\exp(1)$ distributed (F_Y continuous). We want X_k^1, \ldots, X_k^N (approx.) distributed such that $-\log F_Y(\phi(X_k^1)), \ldots, -\log F_Y(\phi(X_k^N))$ are a sample of $\exp(a_k)$. With the knowledge of F_Y , this could be done by a MCMC approach.

 μ_k the target distribution, absolutely continuous w.r.t. μ :

$$\frac{d\mu_k}{d\mu}(x) = a_k \exp(-(a_k - 1)(-\log F_Y(\phi(x)))) = a_k(F_Y(S(x)))^{a_k - 1}.$$

Adaptive Tilting

At iteration k, we have a sample $y_1 = S(x_1), \ldots, y_N = S(x_N)$ of a random variable Y_k such that $-\log(F_Y(Y_k))$ is distributed as $\exp(a_k)$. Let us denote F_k its c.d.f.

$$F_k(h) = \mathbb{P}(Y_k \le h) = (F_Y(h))^{a_k}.$$

Estimate of F_Y on the region of interest by

$$F_Y(h) \simeq (F_k^N(h))^{\frac{1}{a_k}},$$

where F_k^N is the empirical c.d.f. of the current sample.

Level Splitting \longleftrightarrow New empirical c.d.f.

New Algorithm

- Start with a μ sample x_1^1, \ldots, x_M^1 .
- Compute $v_1^1 = S(x_1^1), \dots, v_N^1 = S(x_N^1)$.
- Sort y_1^1, \ldots, y_N^1 . This gives the empirical c.d.f F_1^N .
- k = 1. $a_1 = 1$.
- Iterate
 - k = k + 1.
 - $a_{\nu} = a_{\nu-1}/p_0$.
 - Metropolis-Hastings MCMC in parallel with target distribution μ_k (for the whole sample $x_1^{k-1}, \dots, x_N^{k-1}$, see next algorithm). This will make use of $F_{\nu-1}^N$.
 - This will give the next samples x_1^k, \ldots, x_N^k and $y_1^k = S(x_1^k), \dots, y_N^k = S(x_N^k).$
 - Sort y_1^k, \ldots, y_N^k . This gives the empirical c.d.f F_k^N .
- Until $\hat{q} = \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}_{y_{i}^{k} > L} > p_{0}$.
- Return $\hat{p} = 1 (1 \hat{a})^{\frac{1}{a_k}}$.

Metropolis-Hastings iteration

- Draw a proposal $\ddot{X}_{m+1} \sim K(X_m,.)$.
- Compute Metropolis-Hastings ratio

$$r = \frac{K(\tilde{X}_{m+1}, X_m)\mu(\tilde{X}_{m+1})\frac{d\mu_k}{d\mu}(\tilde{X}_{m+1})}{K(X_m, \tilde{X}_{m+1})\mu(X_m)\frac{d\mu_k}{d\mu}(X_m)}$$

$$= \frac{K(\tilde{X}_{m+1}, X_m)\mu(\tilde{X}_{m+1})}{K(X_m, \tilde{X}_{m+1})\mu(X_m)} \left[\frac{F_{k-1}^N(\tilde{X}_{m+1})}{F_{k-1}^N(X_m)}\right]^{\frac{a_k}{a_{k-1}} - \frac{1}{a_{k-1}}}$$

- Draw $U \sim U(0,1)$.
- If U < r, then $X_{m+1} = \tilde{X}_{m+1}$ else $X_{m+1} = X_m$.
- m = m + 1.

Numerical Results

Toy example: $\mathbb{P}(N(0,1) > 5) = 2.8665 \times 10^{-07}$

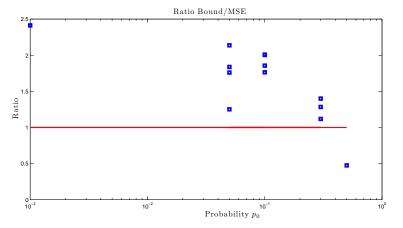


Figure: Ratio of splitting variance bound over empirical MSE for different values of p_0 .

Conclusion

- It works ! (quite unexpected...)
- Performs better than splitting for $p_0 \le 1/3$, but worse than "last particle" algorithm.
- Fully parallel algorithm.
- Possible improvements: population MCMC, estimate of the rare probability.
- To do: theoretical analysis...