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Introduction

The problem

X ~ p, with ;1 probability measure on £ ( R, or a subset)
We know how to draw samples from p
Given a function S : E —— R, we look at the rare event

R ={S(X) >}

We want to compute pu(R) = P(X € R), and draw samples from
pr(dx) = oy Ir (x)(dx)



Introduction

Main Idea

pdf of S(X)

/ /\pz = P(S(X) > L2|S(X) > L1)
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e Ingredients: fix ng and L; < --- < L,y = 7 so that each
pj = P(S(X) > Lj|S(X) > Lj_1) is not too small.

e Bayes decomposition: o = p1ps ... pp,-

¢ Unreasonable assumption: suppose we can estimate each p;
independently with usual Monte-Carlo: p; = p; = N;/N.

e Multilevel Estimator: Gy = pip2.. . Pny-



Introduction

The Shaker

Recall: X ~ pon E.

Ingredient: a p—reversible transition kernel M(x, dx") on E:
V(x,x') € E? p(dx)M(x, dx") = p(dx"YM(x', dx).

e Consequence: M = p.
Example: if X ~ N(0,1) then X' = X£W  Af(0,1), ie.

Xt
M(x, dx") ~ J\/’(\/lfr—z, 1+02)(dx) is a “good shaker”.

x

M(x,.):N(ﬁ,;%)




Splitting Algorithm

A Selection/Mutation Algorithm
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e Initialization: Simulate an i.i.d. sample 5&,...,56\’ ~ L.

o Selection: &) = ¢} if S(&}) > L1, else pick at random among
the N; selected particles.

o Mutation: & ~ M(&}, dx’) and

Vie{l,...,N} g{:{ 1 ifs(g:i

& if S
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Splitting Algorithm

The Impact of the Kernel

M(x,.):N(ﬁ,;%)

o The model: X' = X£2%W  A/(0,1).

Vito
o Expected square distance: E[(X’ — X)?] =2 (1 - \/ﬁ)

@ Trade-off between two drawbacks:

e o too large: most proposed mutations are refused.
e ¢ too small: particles almost don't move.



Splitting Algorithm

Variance Optimization
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Constrained Minimization:

o Optimum: p; = --- = p,, = al/™.

= Solution: Adaptive levels.

Multilevel Estimator: & = p1ps ... pn

j=1

0 -

Fluctuations: If the p;'s are independent, then



Splitting Algorithm

Adaptive Levels

Parameter: fix a proportion pg of surviving particles from one step
to another rather than ng and the levels Ly,..., Lp,.

pdf of S(X)

L, for po =1/2

= Adaptive multilevel estimator:
a=rxpl~ay="FxpP,

log P(S(X)>T)

with ng = L log b

Jandpo<r§1.



Splitting Algorithm

Adaptive Levels

Best adaptive asymtotic variance:

1-— 1—r
o Po+ ‘
Po r

Expression decreasing with larger values of py (constraint
a=rxpP).

.. i o 1 . . . ~ —Ioga
Limit case: pg =1 — N normalized asymptotic variance ~ -

Question: How to use the whole empirical c.d.f. of the scores ?



New Algorithm
Adaptive Tilting

Idea: exponential tilting to improve the likelihood of large values of
S(X), using only the current empirical distribution.

Let Fy the c.d.f. of Y = S(X). The rare event is
R={Y>L}={—logFy(Y) < —logFy(L)}.

E = —log Fy(Y) is exp(1) distributed (Fy continuous).

We want X}, ..., X} (approx.) distributed such that

—log Fy (¢(X})),. .., — log Fy(¢(X])) are a sample of exp(ax).
With the knowledge of Fy, this could be done by a MCMC
approach.

1, the target distribution, absolutely continuous w.r.t. u:

Ci/—l;k(x) = ag exp(—(ax—1)(— log Fy (#(x)))) = ak(Fy(S(x)))"’k_l,



New Algorithm

Adaptive Tilting

At iteration k, we have a sample y; = S(x1),...,yn = S(xn) of a
random variable Y} such that —log(Fy(Yk)) is distributed as
exp(ak). Let us denote Fy its c.d.f.

Fi(h) = P(Yi < h) = (Fy (h))™.

Estimate of Fy on the region of interest by
N -
Fy(h) =~ (F(h))=,

where F,iV is the empirical c.d.f. of the current sample.

Level Splitting +— New empirical c.d.f.



Start with a p sample xi, ..., x3.

New Algorithm

New Algorithm

1

Compute yi = S(x1), ...,y = S(xpy).
Sort yf, e ,y,%,. This gives the empirical c.d.f FlN.

e k=1 a=1.

Iterate

k=k+1.

ak = ak—1/po-
Metropolis-Hastings MCMC in parallel with target distribution

i (for the whole sample xlkfl, e ,x,l(,*l, see next algorithm).
This will make use of F,iv_l.
This will give the next samples xf, ... ,x,’\‘, and

viE=S(), ..,y = S(xK).
Sort yf,...,yK. This gives the empirical c.d.f F}V.

o Until g= 4N, Lys > Po-

1

e Return p=1—(1—§)2.



New Algorithm

Metropolis-Hastings iteration

Draw a proposal Xpm41 ~ K(Xm, -)-

Compute Metropolis-Hastings ratio

K(Xm-i-la X )M( Nm-i-l)%( Nm—i—l)

K(Xma Xm+1) (

K(Xm-l—la Xm)/i()?m—irl)

i (Xm)

Fliv—l(;(m—irl) 1

K(Xm7 )~<m+1)N(Xm)

Draw U ~ U(0,1).

Fel 1 (Xm)

If U< r,then X1 = )N(m+1 else Xmy1 = Xm-

m=m-+1.

a

1
-1
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Numerical Results
Toy example: P(N(0,1) > 5) = 2.8665 x 10777

Ratio Bound/MSE
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Figure: Ratio of splitting variance bound over empirical MSE for different
values of po.



Conclusion

It works ! (quite unexpected...)

Performs better than splitting for py < 1/3, but worse than
“last particle” algorithm.

Fully parallel algorithm.

Possible improvements: population MCMC, estimate of the
rare probability.

To do: theoretical analysis...

Conclusion
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